

Date: 12-11-2024

 Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A - K1 (CO1)
Answer ALL the Questions (10 x 1 = 10)
1. Answer the following

a) Define Order of a Differential Equation
 b) Solve $(D^2 - 3D+2) y=0$
 c) Eliminate arbitrary constants from $z=ax+b y+b$.
 d) Find $L[t^2+2t+3]$
 e) Find $L^{-1}\left\{\frac{1}{(s+a)^2}\right\}$

2. Fill in the blanks

a) The General Solution of the Differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ is $y = \tan x$.
 b) The Particular Integral of $(D^2 +5D+6) y=e^x$ is $y_p = C_1 e^x + C_2 x e^x$.
 c) The Complete Integral of $pq = k$ is $y = C_1 e^{px} + C_2 e^{qx}$.
 d) $L(Sinh t) = \frac{1}{2} e^t$
 e) $L^{-1}\left\{\frac{s-3}{(s-3)^2+4}\right\} = \frac{1}{2} e^{3t} \sin 2t$

SECTION A - K2 (CO1)
Answer ALL the Questions (10 x 1 = 10)
3. Match the following

a) The Integrating factor of the Differential equation $\frac{dy}{dx} + y \cos x = \frac{1}{2} \sin 2x$
 a) $e^{\cos x}$ b) $\sin x$ c) $e^{\sin x}$ d) $e^{\sin^2 x}$
 b) The auxiliary equation of $5\frac{d^2 y}{dx^2} + 7\frac{dy}{dx} + 9y = e^{8x}$ is
 (i) $5m^2 + 7m + 9 = 0$ (ii) $5m^2 + 7m + 9 = 0$ (iii) $5m^2 + 7m + 9 = e^{8x}$ (iv) $5m^2 + 7m + 9 = e^{8x}$
 c) The solution of $z = px + qy + 2\sqrt{pq}$ is
 (i) $z = p + q + pq$ (ii) $z = ax + by + 2\sqrt{ab}$ (iii) $z = pa + qb + ab$ (iv) $z = ax + by + 2\sqrt{ab}$
 d) $L\left\{\frac{t^3}{3}\right\} is
 (i) $\frac{6}{s^4}$ (ii) $\frac{4}{s^4}$ (iii) $\frac{3}{s^3}$ (iv) (i) $\frac{2}{s^4}$
 e) $L^{-1}\left\{\frac{1}{(s+3)^2}\right\} is
 a) $e^{3t} t$ b) $e^{-3t} t$ c) $e^{3t} t^2$ d) $e^{-3t} t^2$$$

4.	True or False
a)	A differential equation is said to be linear when the dependent variable and its derivate occur in first degree only.
b)	$D^2(\sin ax)$ is $-a^2 \sin ax$.

c)	The Partial Differential equation of all spheres whose centres lie on the z- axis is $xp = yq$.
d)	$L[f'(t)]$ is $sL[f(t)]$
e)	Laplace transform is used to solve system of differential equations

SECTION B - K3 (CO2)

Answer any TWO of the following in 100 words each. **(2 x 10 = 20)**

5. Solve $(1-x^2) \frac{dy}{dx} + 2x y = x \sqrt{1-x^2}$ given that $y=0$ when $x=0$
6. Solve $\frac{d^2 y}{dx^2} + 4 y = \tan 2x$ using variation of parameters.
7. Solve $(y-z) p + (z-x) q = x - y$.
8. Find the Laplace transform of $t e^{-t} \sin t$

SECTION C – K4 (CO3)

Answer any TWO of the following in 100 words each. **(2 x 10 = 20)**

9. Solve $x \frac{dy}{dx} + y = x^3 y^6$.
10. Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$.
11. Using Charpit's method, solve $p^2 + q^2 - 2px - 2qy + 1 = 0$.
12. Find the Laplace transform of the Periodic function with period a defined as $f(t) = t$, $0 \leq t < a$

SECTION D – K5 (CO4)

Answer any ONE of the following in 250 words **(1 x 20 = 20)**

13. Using Laplace transform, solve the equation $D^2 + 2D - 3y = \sin t$ given that $y=0, y'=0$ when $t=0$.
14. A body of mass m falling from rest is subject to the force of gravity and an air resistance directly proportional to the square of the velocity ($k v^2$). If it falls through a distance x and possesses a velocity v at that instant prove that $\frac{2kx}{m} = \log \left(\frac{a^2}{a^2 - v^2} \right)$

SECTION E – K6 (CO5)

Answer any ONE of the following in 250 words **(1 x 20 = 20)**

15. a) Evaluate $\int_0^{\infty} t e^{-2t} \cos t dt$ (10 Marks)
b) Verify that $\int_0^{\infty} \frac{e^{-t} - e^{-2t}}{t} dt = \log 2$. (10 Marks)
16. Solve the simultaneous equation: $3 \frac{dx}{dt} + \frac{dy}{dt} + 2x = 1$,
 $\frac{dx}{dt} + 4 \frac{dy}{dt} + 3y = 0$, given that $x = y = 0$ at $t = 0$.

\$\$\$\$\$\$\$\$\$\$\$\$\$